

Optimization, Predictive Analytics, & Real-Time Process Models

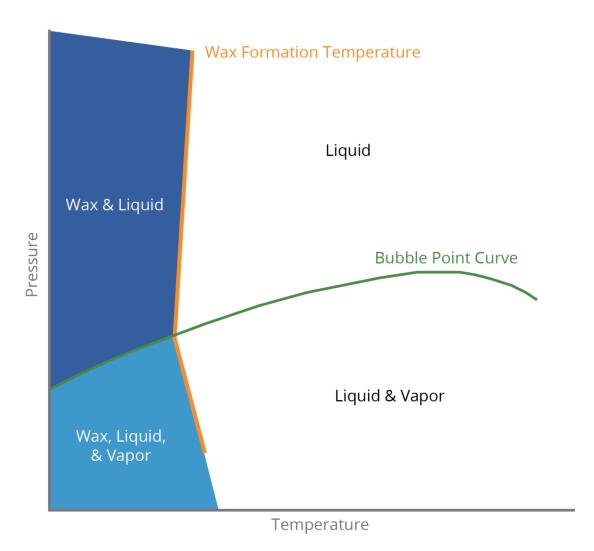
Pipeline Event Detection

Event Detection

- Pipelines can consist of a complex network with many variables moving at the same time. Different events can occur that cause an impact on production, safety, and shipping of fluids through a pipeline.
- *OptiRamp* simulation software can detect several events that occur through the pipeline with a real-time simulation transient model.

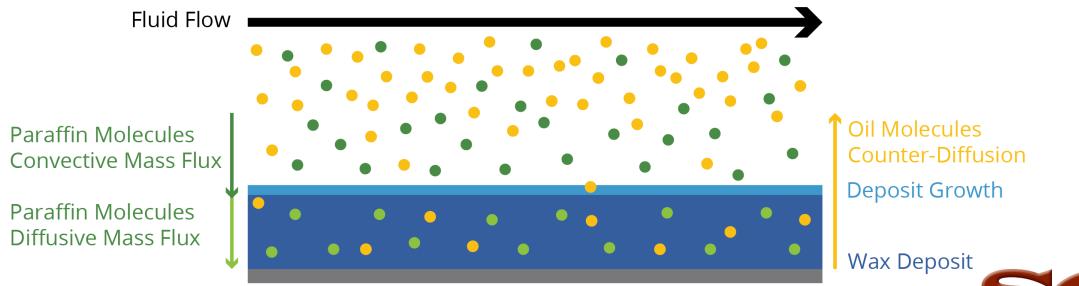
Event Detection

- Congealing
- Hydrate Formation
- Gas Condensation
- Sand Management


- Leak Detection
- Pigging
- Batching
- Slugging

Congealing

The appearance and formation of wax solids occur due to:


- Temperature gradient between pipe wall and centerline flow
- High-yield flow stress occurring due to changes in flow behavior
- Wall temperature is below Wax Appearance Temperature

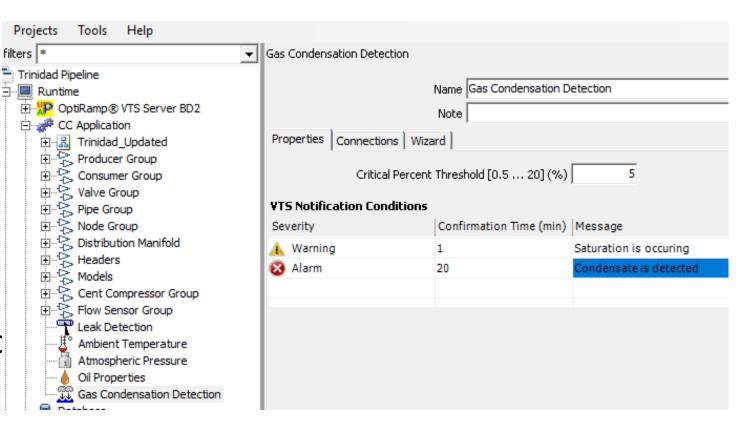
Congealing (ctd)

- OptiRamp Congealing detection displays in Web Analytics
- Enables real-time tracking of segments in pipeline being congealed
- Model looks for concordant precipitation in more than 2 segments prior to generating Congealing notification.

Hydrate Detection

- Looks for hydrate nucleation
- When hydration forms it can obstruct pipeline flow
- Performs thermodynamic equilibrium calculations to determine fraction of the multiphase fluid mass that precipitates

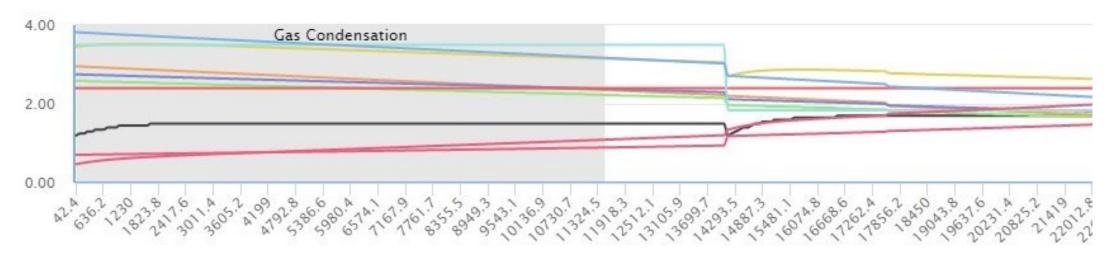
amp® Developer [new]	*	_		×
Tools Help				
-	Hydrate Detection			0
puter CC Application Hydrate Detection	Name Hydrate Detection Note Properties Connections Vizard			
	Detection Confirmation Time (min)	1		
	Notification Clearance Confirmation Time (sec) [60 3600]	180		
	Warning Threshold, Relative % Change in the Water Phase Mass Fraction [1 \dots 20] * (%)	10		
	Alarm Threshold, Relative % Change in the Water Phase Mass Fraction [1 20] * (%)	15		
	Warning Message			
	Alarm Message			
	* Relative % Change = 100 * {(Original Water Mass Fraction - New Water Mass Fraction	n) / Original f	Mass Fracti	
				>



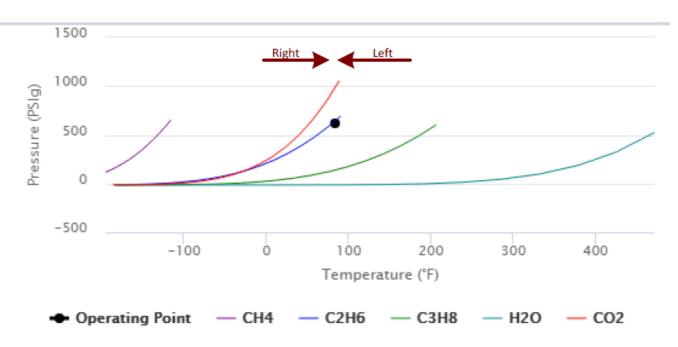
% OptiRi Projects filters *

Project

Gas Condensation


- Looks for condensation of heavy gasses
- Sensitive to live ambient temperature
- Normally found at the base of sagging sections
- Uses dew point and specific humidity to update in real time

Gas Condensation Pipeline Profile


- OptiRamp Condensation detection displays in Web Analytics
- Enables real-time tracking of segments in pipeline that have the potential for condensation

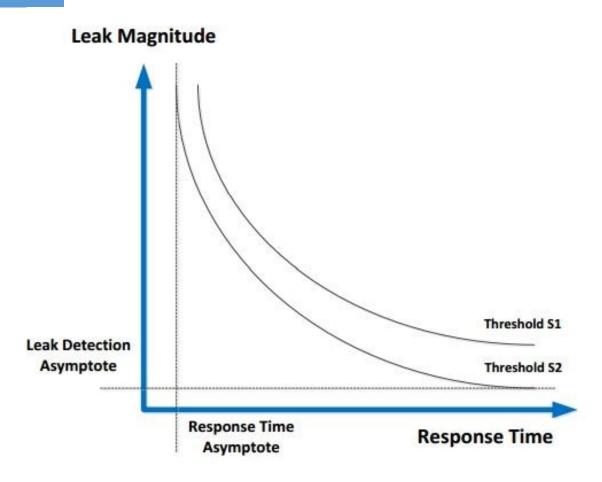
Gas Condensation Phase Diagram

- Helps users understand which components exist in which phases
- Consists of two main items
 - Operating Point
 - Individual Component Curves
- Example shows Methane, Ethane, Propane, Water, and Carbon Dioxide
- Everything to the right is in liquid phase and everything to the left is in gaseous phase

Sand Management

- Sand can cause several risks
 - Frictional pressure loss
 - Erosional damage
 - Equipment failure
- OptiRamp detects sand deposition and sand erosion
- Based on 14E of API

OptiRamp® Developer [new	/]*		_		×	
Projects Tools Help					_	
filters Application 💌	Sand Deposition Detection	l			D	
ple Project Igineering Units Imputer CC Application		Name Sand Depositio	n Detection			
] Sand Management	Properties Connections Connections Wizard					
Sand Deposition Detection	Notification Clearance Confirmation Time (sec) [60 3600] 180 VTS Notification Conditions					
	Severity	Message	Confirmat	ion Time	(min)	
	🗼 Warning		1			
	😢 Alarm		20			
					_	
< >						



Leak Detection

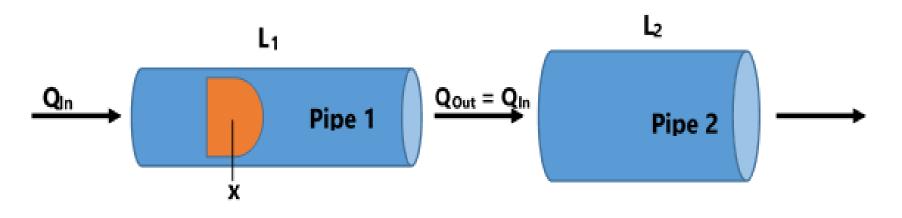
- Finding leaks
 - Material balance equations for every transportation network segment
 - Input = Output + Accumulation $\sum_{i} X_{i}(t) = \sum_{j} Y_{j}(t + \tau_{j}) + \sum_{p} Z_{p}(t)$
 - Binary response prediction: logistic regressions, artificial neural networks
 - User-selected system sensitivity thresholds & corresponding curves
 - Live data to simulate pipeline pressure, temperature, velocity profile
 - Improve models based on confirmation/rejection of detected leaks
 - Based on API RP 1130

Leak Detection Sensitivity Threshold

- Thresholds determine locations for leak magnitude and detection response time
 - Locations indicate minimum detectable leak magnitude & attainable response time to identify leak
- S&C helps determines values during Leak Detection commissioning

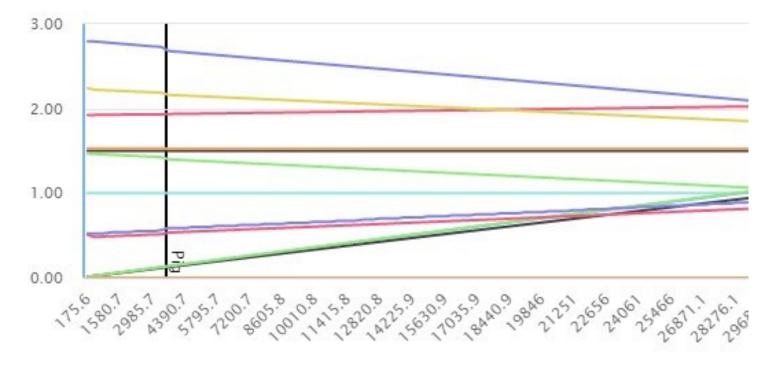
Leak Detection Accuracy

- *OptiRamp* has leak probability analyzer
 - Drive by statistical models
 - Identify segment where leak occurred
 - Leak detect occurs if passes True Positive/True Negative threshold
 - True Negative minimized through historical analytics (operations note if leak actually detected)
- Accuracy depends on quantity of live data sensors (mainly pressure) on pipeline
 - Recommend minimum of 1 sensor/30 km
 - Accuracy = 1 (Type I Error Rate + Type II Error Rate)

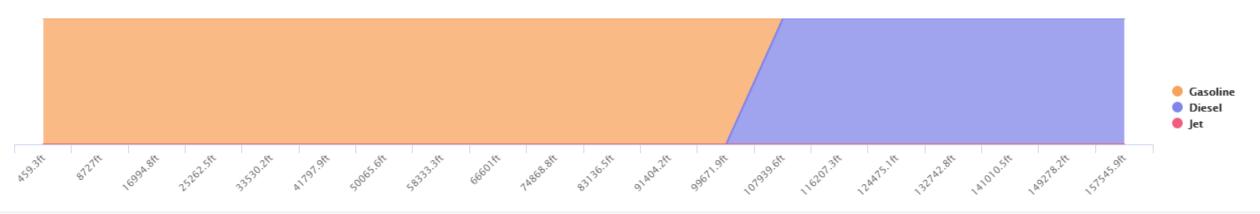

	Leak Exists	Leak Does Not Exist
Leak Detected Alarm	True Positive	False Positive Type I Error
Leak not Detected	False Negative Type II Error	True Negative

Pipeline Inspection Gauge (Pigging)

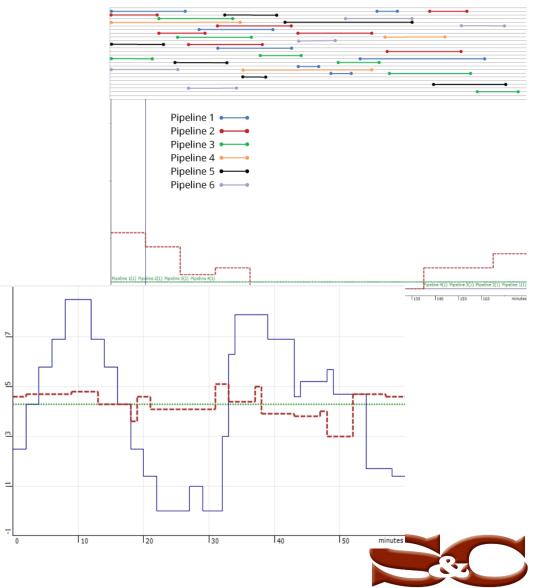
The terms used to compute Pig position are as follows:


- $Q = Q_{In} = Q_{Out}$: Fluid volumetric flow rate along the pipe.
- L_1 and A_1 : Length and cross-sectional area of Pipe 1 (the pipe that currently holds the pig at time t_{n-1})
- L_2 and A_2 : Length and cross-sectional area of Pipe 2 (the pipe immediately downstream of Pipe 1)
- $x(t_{n-1})$ and $x(t_n)$: Pig position at time t_{n-1} and t_n
- V_1 and V_2 : Pipe 1 and 2 internal volumes

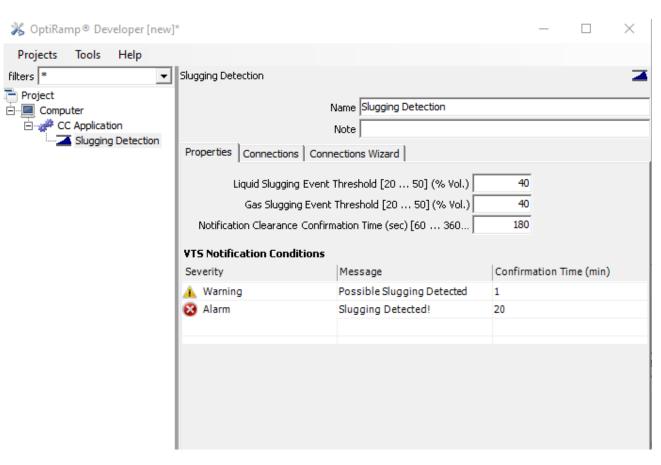
Pipeline Inspection Gauge (Pigging)


- Can allow users to know how much liquid is in the pipeline
- Send notifications to let users know it's time for a pigging exercise
- Help save pipeline operators manual hours and resources from futile pigging operations

Real-Time Batching


- Displays the batch barrier in pipeline profile
- Track product movements
- Can include multiple sources for mixing
- Calculates time for batch to move through the pipeline

Batching Optimization


- Build forecasting model
- Determine most efficient operating mode across asset
- Predict future probabilities or behaviors
- Balance inputs & output (mass balance reconciliation)
- Schedule & allocate based on forecasted constraints & requirements

Statistics & Control, Inc.

Slugging Detection

- Factors that contribute to slugging
 - Superficial velocities of liquid and gas in the pipe
 - Pressure of the fluid
 - Design of the pipeline
- OptiRamp detects slugging situations
- Extended periods of slugging can result in poor separation between oil, water, and gas components

